Curriculum Vitae

Alberto Tosi - Curriculum Vitae

 

Address


E-mail: alberto.tosi@polimi.it


Status


Date of birth: August 3rd, 1975
Place of birth: Borgomanero (NO), Italy
Italian citizen
Civil status: married
Italian clean driver licence (since 1993)
Non-smoker 

 


Publications and Citations reports on February 1, 2017



Scopus:

Author ID: 35499994500
Total number of publications: 213
Total number of citations: 2037
h-index: 25

Personal database:
Total number of publications: > 220

 

 

1. Scholastic and academic career


Since December 2014, Alberto Tosi is Associate professor of Electronics (ING-INF/01) at “Dipartimento di Elettronica, Informazione e Bioingegneria” in “Scuola di Ingegnera Industriale e dell’Informazione” of Politecnico di Milano.

From April 2006 to December 2014, Alberto Tosi was Assistant professor (Ricercatore di ruolo confermato) of Electronics (ING-INF/01) at “Dipartimento di Elettronica, Informazione e Bioingegneria” in “Scuola di Ingegnera Industriale e dell’Informazione” of Politecnico di Milano.

From April 2005 to March 2006 he was research assistant (assegnista di ricerca) at “Dipartimento di Elettronica e Informazione” of Politecnico di Milano.

In 2005 he received the Ph.D. degree (cum laude) in Information Technology Engineering at Politecnico di Milano. Major topic: “Non-invasive testing of VLSI circuits”. Advisor: prof. Franco Zappa.

In 2001 he graduated summa cum laude in Electronics Engineering at Politecnico di Milano. Thesis topic: “Testing of ULSI circuits by means of luminescence measurements at single-photon level with high timing resolution”. Advisor: prof. Franco Zappa.

In 1994 he received the degree “Maturità Scientifica” at Liceo Scientifico Statale “Enrico Fermi” in Arona (NO). Final mark: 60/60.

From July 2004 to October 2004, he did an internship at IBM T.J. Watson, Yorktown Heights, NY (USA), working on the experimental investigation and testing of VLSI CMOS circuits by means of single-photon detectors and imaging arrays, like SPAD, SSPD, CCD, HgCdTe cameras.

In February 2004 he was with CNES (Centre National d’Etudes Spatiales) – French Space Agency in Toulouse (France), where he compared and analyzed advanced testing tools and methods for non-invasive testing of integrated circuits.

Since 2007 he is member of IEEE (Institute of Electrical and Electronics Engineers), both Electron Devices Society and Photonics Society (formerly Lasers & Electro-Optics Society).

 

2. Teaching activities


Since the 2008/2009 Academic Year, he is in charge of “Electronics” (10 credits) in Biomedical Engineering at Politecnico di Milano.

During the 2006/2007 and 2007/2008 Academic Years, he taught “Fundamentals of Electronics” (10 credits) for Telecommunications Engineering at Politecnico di Milano.

During the Academic Years from 2002/2003 to 2008/2009, he was teacher assistant for the courses “Fundamentals of Electronics” (10 credits) for Physics Engineering, Mathematical Engineering, Engineering for Computer Systems, Telecommunications Engineering at Politecnico di Milano.

During the Academic Years from 2002/2003 to 2007/2008, he was teacher and assistant during the laboratory activities for the courses “Fundamentals of Electronics” at Politecnico di Milano.

In the 2002/2003 Academic Year, he was teacher assistant for the course “Electron Devices” at Politecnico di Milano, Faculty of Information Engineering.

During the Academic Year from 2002/2003 to 2007/2008, he gave seminars in the course “Sensors, signals and noise”, held prof. Sergio Cova, at Politecnico di Milano.

In 2013, he was lecturer in the Master course “The expert in Mechatronics” at “Centro di formazione permanente G. Veronesi”, Rovereto, Italy, for 32 hours.

In 2007, he prepared the “Multimedia Teaching Material” for an on-line support course on electronic circuit design at Politecnico di Milano, Dipartimento di Elettronica e Informazione.

 

Since 2002 he has been advisor and co-advisor of more than 90 graduating students in Electronics Engineering at Politecnico di Milano.

Since 2010 he has been advisor for 9 Ph.D. students in Information Technology Engineering at Politecnico di Milano.

                  

 

3. Activities for the scientific community


Conferences:

Since 2011 Alberto Tosi is member of Technical Program Committee (TPC) for the conference Ph. D. Research in Microelectronics and Electronics (PRIME).

In 2014 and 2015 Alberto Tosi was member of the Organizing Committee of the conference “Quantum sensing and Nanophotonic  Devices” at SPIE Photonics West.

In 2013 Alberto Tosi was member of the Technical Committee of CLEO, the Conference on Lasers and Electro-Optics.

In 2010 Alberto Tosi was Session Chair for "Single-Photon Avalanche Diodes IV" within "Advanced Photon Counting Techniques IV (Conference 7681)" during "SPIE Defense, Security, and Sensing 2010", Orlando, USA.

 

Journals:

Alberto Tosi acted as reviewer for many (more than 30) papers submitted to scientific journals published by IEEE, OSA, AIP, Taylor & Francis, Nature Publishing Group, etc.

  

4. Invited talks


Alberto Tosi gave invited talks in conferences and workshops:

·         SPIE Optics East 2007

·         IEEE Photonics Society Meeting 2010

·         SPIE Defense, Security and Sensing 2010

·         SPIE Photonics West 2011

·         SPIE Security+Defense 2012

·         Single Photon Workshop 2013

·         SPIE Photonics West 2014

·         SPIE Defense, Security and Sensing 2014

·         CLEO 2016

 

5. Participation to research projects


Alberto Tosi contributed to the following research projects funded by public entities:

 

Project

Duration

Role

“Smart optical and ultrasound diagnostics of breast cancer (SOLUS)”, H2020 ICT-29-2016-RIA, g.a. 731877

48 months

Principal Investigator for PoliMi-DEIB

“Laser and Ultrasound Co-Analyzer for thyroid nodules”, ICT-28-2015, Cross-cutting ICT KETs, g.a. 688303

48 months

Principal Investigator for PoliMi

“Optical metrology for quantum-enhanced secure telecommunication”, EURANET EMPIR 14IND05 MIQC2

36 months

Principal Investigator for PoliMi

“DARPA REVEAL: Scene Recovery using an extended Plenoptic Function”, University of Wisconsin subcontract PRJ 144 AAA8584

24+24 months

Principal Investigator for PoliMi

“Advanced Laser Ranging Technologies for Altimetry”, ESA ITT AO 1-7483/13/NL/CP. The project will start in June 2014.

20 months

Principal Investigator for PoliMi

"Development of high-performance single-photon detectors", European Metrology Research Programme (EMRP) Grant IND06-REG2 – Researcher Excellence Grant in reference to JRP: IND06 MIQC

12 months

Principal Investigator for PoliMi

"Microelectronic Single-Photon 3D Imaging Arrays for low-light high-speed Safety and Security Applications (MiSPIA)", FP7-ICT-2009.3.7 g.a. 257646

36 months

Co-Principal Investigator for PoliMi

"Quantum Interfaces, Sensors, and Communication based on Entanglement (Q‑ESSENCE)", FP7-ICT-2009.8.2 g.a. 248095

36 months

Participant

"Multichannel microelectronics for arrays of Single-Photon detectors and time-resolved processing for the Optical Spectroscopy of biological tissues", MIUR - PRIN 2009 - prot. 2009XT785A

24 months

Participant

"SpadA: ultrasensitive single photon detector arrays for fast transient bidimensional imaging at 100,000 frames/s and 100ps time-resolution", MIUR - PRIN 2005, prot. 2005095287

24 months

Participant

"Electro-Luminescence Microscope: optoelectronic setup for non-invasive testing of ULSI circuits at 30GHz", MIUR - PRIN 2003, prot. 2003091130

24 months

Participant

"Development of a Global Network for Secure Communication based on Quantum Cryptography (SECOQ)", FP6-2002-IST-1-506813

36 months

Participant

"Enabling Technologies for Quantum Information Systems - EQUIS", FP5-IST-1999-11594

42 months

Participant

"Development of Monolithic Photon-counter Arrays for Transient High-Energy Phenomena and Adaptive Optics in Astrophysics", MIUR-PRIN 2002, Prot. 2002021224

24 months

Participant

 

6. Research activities


In the SPADlab group, Alberto Tosi is currently working on the design and development of Single-Photon Avalanche Diodes (SPADs), in CMOS/BCD technologies and III-V compound semiconductor, for both visible and near-infrared (up to 1700 nm) spectral ranges.

 

Single-photon detectors for the near-infrared wavelength range (1000 – 1700 nm):

Detectors optimized for near-infrared (specifically for 1550 nm and 1064 nm) are manufactured in InGaAs/InP and Germanium-on-Silicon, and are operated in gated mode for a short gate-ON interval (from hundreds of ps to hundreds of nanoseconds) in order to keep noise low.

After having characterized InGaAs/InP and Germanium SPADs from different manufacturers, he designed and developed circuits and methods in order to optimize the performance of InGaAs/InP SPADs for the different applications. The designed electronic solutions guarantee high flexibility (wide choice of gate width, bias voltage, avalanche discrimination threshold, etc.), high gate repetition rates (up to 133 MHz), low timing jitter, etc. These solutions paved the way to new applications where he actively contributed, such as Quantum Information Processing and Communication, Quantum Key Distribution (QKD), Eye safe ranging LIDAR, Optical testing of VLSI circuits, Time-resolved diffused optical spectroscopy, Photodynamic therapy (PDT) for cancer treatment, single-photon source characterization, material science with lifetime measurements at long wavelengths, etc.

For applications requiring extremely high count rates, he developed compact circuits for GHz sinusoidal gating where the SPAD is enabled within ultra-short time intervals (few hundreds of ps) in order to lower the charge flowing through the device, thus strongly reducing the afterpulsing effect. The developed system proved to reach a count rate higher than 500 Mcps, extremely low afterpulsing (< 1%), peak detection efficiency of 30%, low dark count rate and low timing jitter.

He is currently working also on the design and development of new InGaAs/InP SPADs (both single pixels and arrays). The recent photodiodes have state-of-the-art performance, with high photon detection efficiency (30% at 1550 nm), low dark count rate (few kcps), low afterpulsing, low timing jitter (< 60 ps), excellent active area uniformity.

Recently he also pioneered a new device design for the development of Ge-on-Si detectors to be integrated in silicon photonics chips for building integrated systems for quantum computing.

Eventually, the developed detection instruments, based on InGaAs/InP SPADs, have been exploited in many experimental activities in collaboration with international research groups for different application fields.

 

Single-photon detectors for the visible and near-infrared wavelength range (300 – 1000 nm):

For applications where single-photon detectors working up to 1000 nm are required, his research activity focuses on the development of both detectors (single point and arrays) and techniques, tailored to different applications.

He developed methods and circuits for ultra-fast time-gated SPAD detectors (rise-time of few hundreds of ps) with low timing jitter (few tens of ps) for high-resolution waveform reconstruction. He conceived and developed the ultra-fast gating (rise-time < 200 ps) electronics for time-resolved diffuse optical spectroscopy, which guarantees waveform reconstruction with high linearity and wide dynamic range (7 decades). Such instrumentation was successfully exploited in brain functional imaging, optical mammography, food quality assessments, and other biomedical applications, fundamental physics experiments, etc., where he actively contributed.

He is currently working on new CMOS and BCD SPAD devices and microelectronic circuits, such as linear and two-dimensional SPAD arrays for high frame-rate acquisitions. He designed and developed imagers with up to 2048 SPAD pixels, based on “smart pixels” where processing electronics for counting and timing is integrated in each pixel. Specifically, he supervised the design and development of high-resolution (down to 10 ps) high linearity (DNL < 2% LSB) time-to-digital converters (TDCs). Moreover, he conceived and integrated novel SPAD arrays with time-tagging capability. Fully-working SPAD cameras have been developed and exploited in various collaborations with international research groups for LIDAR in the automotive safety field, FLIM (Fluorescence Lifetime Imaging), FCS (Fluorescence Correlation Spectroscopy), Diffuse Optical Spectroscopy and Tomography, spectral source characterization, etc.

 

Non-invasive testing of VLSI circuits:

He developed methods and techniques for investigating signals propagating inside VLSI CMOS circuits. He exploited various detectors (SPAD, SSPD, HgCdTe camera, etc.) for the efficient acquisition of the electroluminescence from MOSFET’s switching in VLSI circuits. He developed the optical systems, the electronic instrumentation and the methods for testing the circuits and finding the faulty devices.

 

Pubblications (see attached list):

He is co-author of more than 220 papers on peer-reviewed journals and conference proceedings, and he is the co-inventor of 3 patents for improving the optical testing of integrated circuits.

 

 

Pubblications of Alberto Tosi

February 1, 2017

 

[1]      M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers,” IEEE Photonics J., vol. 9, no. 1, pp. 7800114-1-7800114–14, Feb. 2017.

[2]      D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review,” IEEE Sens. J., vol. 16, no. 1, pp. 1–1, 2016.

[3]      N. Calandri, M. Sanzaro, A. Tosi, C. Savoia, and L. Motta, “Optical crosstalk in InGaAs/InP SPAD array: analysis and reduction with FIB-etched trenches,” IEEE Photonics Technol. Lett., vol. 28, no. 16, pp. 1767–1770, Aug. 2016.

[4]      N. Calandri, M. Sanzaro, A. Tosi, and F. Zappa, “Charge Persistence in InGaAs/InP Single-Photon Avalanche Diodes,” IEEE J. Quantum Electron., vol. 52, no. 3, pp. 1–7, Mar. 2016.

[5]      M. Castello, G. Tortarolo, I. C. Hernández, P. Bianchini, M. Buttafava, G. Boso, A. Tosi, A. Diaspro, and G. Vicidomini, “Gated-sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching,” Microsc. Res. Tech., Jul. 2016.

[6]      L. Di Sieno, H. Wabnitz, A. Pifferi, M. Mazurenka, Y. Hoshi, A. Dalla Mora, D. Contini, G. Boso, W. Becker, F. Martelli, A. Tosi, and R. Macdonald, “Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection,” Rev. Sci. Instrum., vol. 87, no. 3, p. 35118, Mar. 2016.

[7]      X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci., vol. 3, no. 3, p. 150584, Mar. 2016.

[8]      F. Piacentini, A. Avella, M. P. Levi, M. Gramegna, G. Brida, I. P. Degiovanni, E. Cohen, R. Lussana, F. Villa, A. Tosi, F. Zappa, and M. Genovese, “Measuring Incompatible Observables by Exploiting Sequential Weak Values,” Phys. Rev. Lett., vol. 117, no. 17, p. 170402, Oct. 2016.

[9]      F. Piacentini, A. Avella, M. P. Levi, R. Lussana, F. Villa, A. Tosi, F. Zappa, M. Gramegna, G. Brida, I. P. Degiovanni, and M. Genovese, “Experiment Investigating the Connection between Weak Values and Contextuality,” Phys. Rev. Lett., vol. 116, no. 18, p. 180401, May 2016.

[10]    F. Piacentini, A. Avella, M. P. Levi, R. Lussana, F. Villa, A. Tosi, F. Zappa, M. Gramegna, G. Brida, I. P. Degiovanni, and M. Genovese, “Experiment Investigating the Connection between Weak Values and Contextuality,” Phys. Rev. Lett., vol. 116, no. 18, p. 180401, May 2016.

[11]    C. J. Pugh, P. Kolenderski, C. Scarcella, A. Tosi, and T. Jennewein, “Towards correcting atmospheric beam wander via pump beam control in a down conversion process,” Opt. Express, vol. 24, no. 18, p. 20947, Sep. 2016.

[12]    M. Sanzaro, N. Calandri, A. Ruggeri, and A. Tosi, “InGaAs/InP SPAD With Monolithically Integrated Zinc-Diffused Resistor,” IEEE J. Quantum Electron., vol. 52, no. 7, pp. 4500207-1-4500207–7, Jul. 2016.

[13]    J. Sutin, B. Zimmerman, D. Tyulmankov, D. Tamborini, C. W. Kuan, J. Selb, A. Gulinatti, I. Rech, A. Tosi, D. A. Boas, and M. A. Franceschini, “Time-domain diffuse correlation spectroscopy,” Optica, vol. 3, no. 9, pp. 1006–1013, Sep. 2016.

[14]    R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica, vol. 2, no. 12, p. 1049, Dec. 2015.

[15]    R. Aspden, N. R. Gemmell, P. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Trans-spectral Ghost Microscopy,” in Frontiers in Optics 2015, 2015, p. FTh4D.8.

[16]    W. Becker, Advanced Time-Correlated Single Photon Counting Applications, vol. 111. Cham: Springer International Publishing, 2015.

[17]    G. Boso, M. Buttafava, F. Villa, and A. Tosi, “Low-Cost and Compact Single-Photon Counter Based on a CMOS SPAD Smart Pixel,” IEEE Photonics Technol. Lett., vol. 27, no. 23, pp. 2504–2507, Dec. 2015.

[18]    D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Detectors and Imagers: Figures of merit for Photon-counting and Photon-timing Applications,” IEEE Sens. J., vol. PP, no. 99, pp. 1–1, 2015.

[19]    D. Bronzi, Y. Zou, S. Bellisai, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPADAS: a high-speed 3D single-photon camera for advanced driver assistance systems,” in Proc. SPIE 9366, Smart Photonic and Optoelectronic Integrated Circuits XVII, 2015, p. 93660M.

[20]    D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive Three-Dimensional Vision Through a Single-Photon Counting SPAD Camera,” IEEE Trans. Intell. Transp. Syst., vol. PP, no. 99, pp. 1–14, 2015.

[21]    M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express, vol. 23, no. 16, p. 20997, Aug. 2015.

[22]    M. Celebrano, M. Baselli, M. Bollani, J. Frigerio, A. Bahgat Shehata, A. Della Frera, A. Tosi, A. Farina, F. Pezzoli, J. Osmond, X. Wu, B. Hecht, R. Sordan, D. Chrastina, G. Isella, L. Duò, M. Finazzi, and P. Biagioni, “Emission Engineering in Germanium Nanoresonators,” ACS Photonics, vol. 2, no. 1, pp. 53–59, Jan. 2015.

[23]    D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D. Appl. Phys., vol. 45401, no. 4, p. 45401, Feb. 2015.

[24]    A. Dalla Mora, D. Contini, S. R. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next generation time-domain diffuse optics devices,” in Proc. SPIE 9319, Optical Tomography and Spectroscopy of Tissue XI, 2015, p. 93191J.

[25]    A. Dalla Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity,” Biomed. Opt. Express, vol. 6, no. 5, pp. 1749–1760, May 2015.

[26]    A. Dalla Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express, vol. 23, no. 11, p. 13937, May 2015.

[27]    A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Boso, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys., vol. 117, no. 11, p. 114501, Mar. 2015.

[28]    T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, A. Tosi, F. Zappa, C. Justicia, and T. Durduran, “Multi-Exposure, Continous Laser Speckle Contrast Imaging of Mouse Brain Enable by A Novel Single Photon Avalanche Diode (SPAD) Array,” in XXVIIth International Symposium on Cerebral Blood Flow, Metabolism and Function & XIIth International Conference on Quantification of Brain Function with PET, 2015.

[29]    T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, F. Villa, A. Tosi, C. Justicia, F. Zappa, and T. Durduran, “High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera,” Biomed. Opt. Express, vol. 6, no. 8, p. 2865, Jul. 2015.

[30]    P. Foglia Manzillo, C. N. van Dijk, S. Conticello, M. Esposito, R. Lussana, F. Villa, D. Tamborini, F. Zappa, A. Tosi, A. Roncat, N. Pfeiffer, T. Entner, and D. Lampridis, “ALART: a novel lidar system for vegetation height retrieval from space,” in Proc. SPIE 9645, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XI, 2015, p. 96450E.

[31]    I. C. Hernández, M. Buttafava, G. Boso, A. Diaspro, A. Tosi, and G. Vicidomini, “Gated STED microscopy with time-gated single-photon avalanche diode,” Biomed. Opt. Express, vol. 6, no. 6, pp. 2258–2267, Jun. 2015.

[32]    G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express, vol. 23, no. 26, p. 33777, Dec. 2015.

[33]    G. Intermite, R. E. Warburton, A. McCarthy, X. Ren, F. Villa, A. J. Waddie, M. R. Taghizadeh, Y. Zou, F. Zappa, A. Tosi, and G. S. Buller, “Enhancing the fill-factor of CMOS SPAD arrays using microlens integration,” in Proc. SPIE 9504, Photon Counting Applications 2015, 2015, p. 95040J.

[34]    R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express, vol. 23, no. 19, pp. 24962–24973, Sep. 2015.

[35]    E. Martinenghi, A. Dalla Mora, D. Contini, A. Torricelli, A. Tosi, G. Boso, S. R. Arridge, F. Martelli, A. Farina, T. Durduran, and A. Pifferi, “Performance Breakthrough in Time-Domain Diffuse Optics: Next-Generation Devices,” Abstr. FOTONICA 2015 - Convegno Ital. delle Tecnol. Fotoniche - 217th Ed., 2015.

[36]    A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, A. Planat-Chrétien, A. Koenig, G. Boso, A. Tosi, L. Hervé, and J.-M. Dinten, “Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations,” Biomed. Opt. Express, vol. 6, no. 1, pp. 1–10, 2015.

[37]    A. Ruggeri, P. Ciccarella, F. Villa, F. Zappa, and A. Tosi, “Integrated Circuit for Subnanosecond Gating of InGaAs/InP SPAD,” IEEE J. Quantum Electron., vol. 51, no. 7, pp. 1–7, Jul. 2015.

[38]    M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, “InGaAs/InP single-photon detector with low noise, low timing jitter and high count rate,” in Proc. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 2015, p. 93701T.

[39]    C. Scarcella, G. Boso, A. Ruggeri, and A. Tosi, “InGaAs/InP single-photon detector gated at 1.3 GHz with 1.5 % afterpulsing,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 3, pp. 1–1, 2015.

[40]    D. Tamborini, D. Portaluppi, S. Tisa, and A. Tosi, “Time-to-digital converter card for multichannel time-resolved single-photon counting applications,” in Proc. SPIE 9369, Photonic Instrumentation Engineering II, 2015, p. 93690Q.

[41]    A. Torricelli, D. Contini, A. Dalla Mora, D. Tamborini, F. Villa, A. Tosi, and L. Spinelli, “Recent Advances in Time-Resolved NIR Spectroscopy for Nondestructive Assessment of Fruit Quality,” in CHEMICAL ENGINEERING TRANSACTIONS, 2015, vol. 44, pp. 43–48.

[42]    F. Villa, R. Lussana, D. Bronzi, A. Dalla Mora, D. Contini, S. Tisa, A. Tosi, and F. Zappa, “High linearity SPAD and TDC array for TCSPC and 3D ranging applications,” in Proc. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 2015, p. 93701U.

[43]    F. Villa, R. Lussana, D. Tamborini, A. Tosi, and F. Zappa, “High fill-factor 60×1 SPAD array with 60 sub-nanosecond integrated TDCs,” IEEE Photonics Technol. Lett., vol. 27, no. 12, pp. 1–1, 2015.

[44]    F. Villa, Y. Zou, A. Dalla Mora, A. Tosi, and F. Zappa, “SPICE Electrical Models and Simulations of Silicon Photomultipliers,” IEEE Trans. Nucl. Sci., vol. 62, no. 5, pp. 1950–1960, Oct. 2015.

[45]    Y. Zou, F. Villa, D. Bronzi, S. Tisa, A. Tosi, and F. Zappa, “Fully CMOS analog and digital SiPMs,” in Proc. SPIE 9359, Optical Components and Materials XII, 2015, p. 93591B.

[46]    Y. Zou, F. Villa, D. Bronzi, S. Tisa, A. Tosi, and F. Zappa, “Planar CMOS analog SiPMs: design, modeling, and characterization,” J. Mod. Opt., vol. 62, no. 20, pp. 1693–1702, Nov. 2015.

[47]    G. Boso, A. Tosi, A. Dalla Mora, and F. Zappa, “High-throughput gated photon counter with two detection windows programmable down to 70 ps width.,” Rev. Sci. Instrum., vol. 85, no. 1, p. 13107, Jan. 2014.

[48]    D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 6, pp. 1–10, Nov. 2014.

[49]    M. Buttafava, G. Boso, A. Ruggeri, A. Dalla Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum., vol. 85, no. 8, p. 83114, Aug. 2014.

[50]    M. Celebrano, M. Baselli, M. Bollani, J. Frigerio, A. Bahgat Shehata, A. Della Frera, A. Tosi, A. Farina, F. Pezzoli, J. Osmond, X. Wu, B. Hecht, R. Sordan, D. Chrastina, G. Isella, L. Duò, M. Finazzi, and P. Biagioni, “Emission engineering in germanium nanoresonators,” in Conference of COST Action MP1302 Nanospectroscopy - “Optical Nanospectroscopy I,” 2014, p. 1.

[51]    M. Celebrano, M. Baselli, M. Bollani, J. Frigerio, A. Bahgat Shehata, A. Della Frera, A. Tosi, A. Farina, F. Pezzoli, J. Osmond, X. Wu, B. Hecht, R. Sordan, D. Chrastina, G. Isella, L. Duò, M. Finazzi, and P. Biagioni, “Ge nanoantennas for enhanced emission at telecom wavelengths,” in Abstracts of 13th nternational conference of Near-field Optics and Nanophotonics (NFO), 2014, p. 141.

[52]    L. Di Sieno, A. Dalla Mora, G. Boso, A. Tosi, A. Pifferi, R. Cubeddu, and D. Contini, “Diffuse optics using a dual window fast-gated counter,” Appl. Opt., vol. 53, no. 31, p. 7394, Oct. 2014.

[53]    G. Éthier-Majcher, P. St-Jean, G. Boso, A. Tosi, J. F. Klem, and S. Francoeur, “Complete quantum control of exciton qubits bound to isoelectronic centres,” Nat. Commun., vol. 5, pp. 3980-1-3980–5, May 2014.

[54]    K. D. Johnsen, P. Kolenderski, C. Scarcella, M. Thibault, A. Tosi, and T. Jennewein, “Time and spectrum-resolving multiphoton correlator for 300–900 nm,” J. Appl. Phys., vol. 116, no. 14, p. 143101, Oct. 2014.

[55]    P. Kolenderski, C. Scarcella, K. D. Johnsen, D. R. Hamel, C. Holloway, L. K. Shalm, S. Tisa, A. Tosi, K. J. Resch, and T. Jennewein, “Time-resolved double-slit interference pattern measurement with entangled photons.,” Sci. Rep., vol. 4, p. 4685, Jan. 2014.

[56]    A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes,” in Proc. of SPIE 8937, Multimodal Biomedical Imaging IX, 2014, p. 89370Z–1–89370Z–6.

[57]    M. L. Rastello, I. Pietro Degiovanni, A. G. Sinclair, S. Kück, C. J. Chunnilall, G. Porrovecchio, M. Smid, F. Manoocheri, E. Ikonen, T. Kubarsepp, D. Stucki, K. S. Hong, S. K. Kim, A. Tosi, G. Brida, A. Meda, F. Piacentini, P. Traina, A. Al Natsheh, J. Y. Cheung, I. Müller, R. Klein, and A. Vaigu, “Metrology for industrial quantum communications: the MIQC project,” Metrologia, vol. 51, no. 6, pp. S267–S275, Dec. 2014.

[58]    X. Ren, A. McCarthy, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Time-of-flight Depth Imaging at 1550 nm Wavelength at Kilometer-range Distances Using an InGaAs/InP Single-Photon Avalanche Diode Detector,” in CLEO: 2014, 2014, p. SM4E.8.

[59]    C. Scarcella, G. Boso, F. Acerbi, A. Ruggeri, A. Della Frera, and A. Tosi, “100 Mcount/s InGaAs/InP single-photon detector,” in Proc. SPIE 8993, Quantum Sensing and Nanophotonic Devices XI, 2014, p. 89932F–1–89932F–6.

[60]    D. Tamborini, B. Markovic, F. Villa, and A. Tosi, “16-Channel Module Based on a Monolithic Array of Single-Photon Detectors and 10-ps Time-to-Digital Converters,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 6, pp. 1–8, Nov. 2014.

[61]    D. Tamborini, D. Portaluppi, F. Villa, S. Tisa, and A. Tosi, “Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs,” Review of Scientific Instruments, vol. 85, no. 11. AIP Publishing, p. 114703, 07-Nov-2014.

[62]    A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 6, pp. 1–6, Nov. 2014.

[63]    A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 6, pp. 1–6, Nov. 2014.

[64]    A. Tosi, M. Sanzaro, N. Calandri, A. Ruggeri, and F. Acerbi, “Low dark count rate and low timing jitter InGaAs/InP Single-Photon Avalanche Diode,” in 2014 44th European Solid State Device Research Conference (ESSDERC), 2014, pp. 82–85.

[65]    A. Tosi, F. Villa, D. Bronzi, Y. Zou, R. Lussana, D. Tamborini, S. Tisa, D. Durini, S. Weyers, U. Pashen, W. Brockherde, and F. Zappa, “Low-noise CMOS SPAD arrays with in-pixel time-to-digital converters,” in Proc. SPIE 9114, Advanced Photon Counting Techniques VIII, 2014, p. 91140C–1–91140C–8.

[66]    F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt., vol. 61, no. 2, pp. 102–115, Jan. 2014.

[67]    F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 6, pp. 364–373, Nov. 2014.

[68]    F. Acerbi, M. Anti, A. Tosi, and F. Zappa, “Design Criteria for InGaAs/InP Single-Photon Avalanche Diode,” IEEE Photonics J., vol. 5, no. 2, pp. 6800209–6800209, Apr. 2013.

[69]    F. Acerbi, A. Della Frera, A. Tosi, and F. Zappa, “Fast Active Quenching Circuit for Reducing Avalanche Charge and Afterpulsing in InGaAs/InP Single-Photon Avalanche Diode,” Quantum Electron. IEEE J., vol. 49, no. 7, pp. 563–569, 2013.

[70]    F. Acerbi, A. Tosi, and F. Zappa, “Avalanche Current Waveform Estimated From Electroluminescence in InGaAs/InP SPADs,” IEEE Photonics Technol. Lett., vol. 25, no. 18, pp. 1778–1780, Sep. 2013.

[71]    F. Acerbi, A. Tosi, and F. Zappa, “Dark Count Rate Dependence on Bias Voltage During Gate-OFF in InGaAs/InP Single-Photon Avalanche Diodes,” IEEE Photonics Technol. Lett., vol. 25, no. 18, pp. 1832–1834, Sep. 2013.

[72]    F. Acerbi, A. Tosi, and F. Zappa, “Growths and diffusions for InGaAs/InP single-photon avalanche diodes,” Sensors Actuators A Phys., vol. 201, pp. 207–213, Oct. 2013.

[73]    I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “In-vivo optical spectroscopy in the time-domain beyond 1100 nm,” in European Conferences on Biomedical Optics, 2013, p. 879902.

[74]    S. Bellisai, D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Single-photon pulsed-light indirect time-of-flight 3D ranging,” Opt. Express, vol. 21, no. 4, pp. 5086–5098, Feb. 2013.

[75]    G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200ps transitions and 30ps timing jitter,” Sensors Actuators A Phys., vol. 191, pp. 61–67, Mar. 2013.

[76]    D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects,” IEEE Photonics Technol. Lett., vol. 25, no. 8, pp. 776–779, Apr. 2013.

[77]    D. Bronzi, F. Villa, S. Bellisai, S. Tisa, G. Ripamonti, and A. Tosi, “Figures of merit for CMOS SPADs and arrays,” in Proc. SPIE 8773, Photon Counting Applications IV; and Quantum Optics and Quantum Information Transfer and Processing, 2013, p. 877304.

[78]    D. Bronzi, F. Villa, S. Bellisai, S. Tisa, A. Tosi, G. Ripamonti, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Large-area CMOS SPADs with very low dark counting rate,” in Proc. SPIE 8631, Quantum Sensing and Nanophotonic Devices X, 2013, p. 86311B–86311B–8.

[79]    D. Contini, A. Dalla Mora, L. Di Sieno, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Memory effect in gated single-photon avalanche diodes: a limiting noise contribution similar to afterpulsing,” in Proc. SPIE 8619, Physics and Simulation of Optoelectronic Devices XXI, 2013, p. 86191L–1–86191L–9.

[80]    L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” in European Conferences on Biomedical Optics, 2013, p. 880402.

[81]    L. Di Sieno, A. Pifferi, A. Dalla Mora, D. Contini, G. Boso, and A. Tosi, “Time-Resolved Diffuse Optical Spectroscopy by Means of Reflectance Scanning Imaging System: First In-Vivo Tests,” in Fotonica 2013 - Book of Abstracts, 2013, pp. 1–4.

[82]    A. Farina, I. Bargigia, A. Bahgat Shehata, A. Dalla Mora, A. Della Frera, A. Tosi, F. Zappa, P. Taroni, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1.7 μm for the characterization of diffusive materials,” in NIR 2013 - 16th International Conference on Near Infrared Spectroscopy, 2013.

[83]    R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip.,” Sci. Rep., vol. 3, p. 2314, Jan. 2013.

[84]    P. Kolenderski, K. Jonsen, C. Scarcella, D. Hamel, K. Shalm, S. Tisa, A. Tosi, K. Resch, and T. Jennewein, “Experimental remote state preparation and estimation for spatial qubits,” in OSA Technical Digest - CLEO: 2013, 2013, p. QF2B.5.

[85]    B. Markovic, D. Tamborini, S. Bellisai, A. Bassi, A. Pifferi, F. Villa, G. M. Padovini, and A. Tosi, “Monolithic time-to-digital converter chips for time-correlated single-photon counting and fluorescence lifetime measurements,” in Proc. SPIE 8631, Quantum Sensing and Nanophotonic Devices X, 2013, p. 86311F–1–86311F–7.

[86]    B. Markovic, S. Tisa, F. Villa, A. Tosi, and F. Zappa, “A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 60, no. 3, pp. 557–569, Mar. 2013.

[87]    M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” in European Conferences on Biomedical Optics, 2013, p. 87990L–87990L–7.

[88]    M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express, vol. 4, no. 10, p. 2257, Sep. 2013.

[89]    A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express, vol. 21, no. 19, p. 22098, Sep. 2013.

[90]    A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging using an InGaAs / InP single-photon avalanche diode detector operating at a wavelength of 1550 nm,” in Single Photon Workshop 2013, 2013, vol. 13104, no. 2012, p. 139.

[91]    F. Piacentini, P. Traina, A. Della Frera, A. Tosi, C. Scarcella, A. Ruggeri, A. Gulinatti, M. Ghioni, S. Polyakov, A. L. Migdall, A. Giudice, G. Brida, I. Pietro Degiovanni, and M. Genovese, “An extremely low-noise heralded single-photon source without temporal post-selection,” in Proc. SPIE 8773, Photon Counting Applications IV; and Quantum Optics and Quantum Information Transfer and Processing, 2013, p. 87730S–87730S–6.

[92]    C. Pugh, P. Kolenderski, C. Scarcella, S. Bellisai, A. Tosi, and T. Jennewein, “Theoretical and experimental investigations into spatial correlations in spontaneous parametric downconversion,” in Single Photon Workshop 2013, 2013, vol. 13811, no. 2009, p. 102.

[93]    A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes.,” Biomed. Opt. Express, vol. 4, no. 8, pp. 1351–65, Jan. 2013.

[94]    A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, A. Planat-Chrétien, L. Hervé, A. Koenig, and J.-M. Dinten, “Experimental results on time-resolved reflectance diffuse optical tomography with fast-gated SPADs,” in Proc. SPIE 8799, Diffuse Optical Imaging IV, 2013, pp. 879903-879903–5.

[95]    C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.,” Rev. Sci. Instrum., vol. 84, no. 12, p. 123112, Dec. 2013.

[96]    D. Tamborini, B. Markovic, L. Di Sieno, D. Contini, A. Bassi, S. Tisa, A. Tosi, and F. Zappa, “Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs,” in Proc. SPIE 8993, Quantum Sensing and Nanophotonic Devices XI, 2013, p. 89932I.

[97]    D. Tamborini, B. Markovic, S. Tisa, F. Villa, and A. Tosi, “TDC with 1.5% DNL based on a single-stage vernier delay-loop fine interpolation,” in 2013 IEEE Nordic-Mediterranean Workshop on Time-to-Digital Converters (NoMe TDC), 2013, pp. 1–6.

[98]    A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “Low afterpulsing and narrow timing response InGaAs/InP Single-Photon Avalanche Diode,” in Proc. SPIE 8631, Quantum Sensing and Nanophotonic Devices X, 2013, p. 86311C–86311C–6.

[99]    A. Tosi, F. Acerbi, A. Della Frera, C. Scarcella, A. Ruggeri, A. Bahgat Shehata, and F. Zappa, “Single-photon counting with InGaAs/InP SPAD,” in Fotonica 2013 - Book of Abstracts, 2013, pp. 1–4.

[100]  A. Tosi, F. Acerbi, C. Scarcella, G. Boso, A. Della Frera, A. Ruggeri, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diodes working up to 100 Mcount/s,” Single Photon Workshop 2013 - Book of abstracts. p. 46, 2013.

[101]  A. Tosi, F. Acerbi, C. Scarcella, G. Boso, A. Della Frera, A. Ruggeri, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diodes working up to 100 Mcount/s,” in Single Photon Workshop 2013, 2013, vol. 48, no. 9, p. 46.

[102]  A. Tosi, D. Bronzi, F. Villa, Y. Zou, D. Tamborini, S. Tisa, and F. Zappa, “SPAD imagers for 2D imaging and 3D direct/indirect Time-of-Flight,” in Single Photon Workshop 2013, 2013, vol. 21, no. 4, p. 137.

[103]  A. Tosi, A. Ruggeri, A. Bahgat Shehata, A. Della Frera, C. Scarcella, S. Tisa, and A. Giudice, “InGaAs/InP SPAD photon-counting module with auto-calibrated gate-width generation and remote control,” in Proc. SPIE 8631, Quantum Sensing and Nanophotonic Devices X, 2013, p. 86311G.

[104]  A. Tosi, C. Scarcella, G. Boso, and F. Acerbi, “Gate-Free InGaAs/InP Single-Photon Detector Working at Up to 100 Mcount/s,” IEEE Photonics J., vol. 5, no. 4, pp. 6801308–6801308, Aug. 2013.

[105]  A. Tosi and F. Zappa, “MiSPiA: microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications,” in Proc. SPIE 8899, Emerging Technologies in Security and Defence; and Quantum Security II; and Unmanned Sensor Systems X, 2013, p. 88990D–1–88990D–9.

[106]  P. Traina, D. Gatto Monticone, F. Piacentini, E. Moreva, G. Brida, I. Pietro Degiovanni, M. Genovese, I. Ruo Berchera, P. Olivero, A. Della Frera, A. Tosi, A. Bahgat Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. Polyakov, A. L. Migdall, and A. Giudice, “Heralded sources vs colour-centers-based quantum emitters in diamond: towards an ideal Single Photon Source,” in Single Photon Workshop 2013, 2013, vol. 12120, no. 2010, p. 89.

[107]  F. Villa, R. Lussana, D. Tamborini, D. Bronzi, B. Markovic, A. Tosi, F. Zappa, and S. Tisa, “CMOS single photon sensor with in-pixel TDC for Time-of-Flight applications,” in 2013 IEEE Nordic-Mediterranean Workshop on Time-to-Digital Converters (NoMe TDC), 2013, pp. 1–6.

[108]  F. Zappa and A. Tosi, “Improving car safety with low-light, high-speed cameras,” SPIE Newsroom, Jun. 2013.

[109]  F. Zappa and A. Tosi, “MiSPIA: microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications,” in Proc. SPIE 8727, Advanced Photon Counting Techniques VII, 2013, p. 87270L–1–87270L–11.

[110]  F. Acerbi, A. Tosi, A. Bahgat Shehata, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode with narrow photon timing response,” in IEEE Photonics Conference 2012, 2012, pp. 94–95.

[111]  E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett., vol. 37, no. 14, pp. 2877–2879, 2012.

[112]  M. Anti, F. Acerbi, A. Tosi, and F. Zappa, “2D simulation for the impact of edge effects on the performance of planar InGaAs/InP SPADs,” in Proc. SPIE 8550, Optical Systems Design 2012, 2012, pp. 855025-855025–10.

[113]  I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode.,” Appl. Spectrosc., vol. 66, no. 8, pp. 944–50, Aug. 2012.

[114]  I. Bargigia, A. Tosi, A. Farina, A. Bassi, P. Taroni, A. Bahgat Shehata, A. Della Frera, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Optical Spectroscopy up to 1700 nm: a Time-Resolved Approach Combined with an InGaAs/InP Single-Photon Avalanche Diode,” in Biomedical Optics and 3-D Imaging, 2012, p. JM3A.16.

[115]  I. Bargigia, A. Tosi, A. Farina, A. Bassi, P. Taroni, A. Bahgat Shehata, A. Della Frera, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Una Tecnica Risolta nel Tempo per Spettroscopia Ottica di Mezzi Diffondenti fino a 1700 nm,” NIR ITALIA 2012. pp. 35–38, 2012.

[116]  S. Bellisai, L. Ferretti, F. Villa, A. Ruggeri, S. Tisa, A. Tosi, and F. Zappa, “Low-power 20-meter 3D ranging SPAD camera based on continuous-wave indirect time-of-flight,” in Proc. SPIE 8375, Advanced Photon Counting Techniques VI, 2012, p. 83750E–1–83750E–7.

[117]  G. Boso, A. Dalla Mora, A. Tosi, A. Della Frera, and F. Zappa, “Fast-gated single-photon detection module with 200 ps transitions running up to 50 MHz with 30 ps resolution,” in Quantum Sensing and Nanophotonic Devices IX, Proceedings of SPIE 8268, 2012, vol. 8268, p. 82681U.

[118]  G. Brida, I. Pietro Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. Della Frera, A. Tosi, A. Bahgat Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. Polyakov, A. L. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett., vol. 101, no. 22, p. 221112, Nov. 2012.

[119]  D. Bronzi, S. Bellisai, F. Villa, C. Scarcella, A. Bahgat Shehata, A. Tosi, G. M. Padovini, F. Zappa, S. Tisa, D. Durini, S. Weyers, and W. Brockherde, “3D sensor for indirect ranging with pulsed laser source,” in Proc. SPIE 8541, Electro-Optical and Infrared Systems: Technology and Applications IX, 2012, p. 85410T.

[120]  D. Bronzi, F. Villa, S. Bellisai, B. Markovic, G. Boso, C. Scarcella, A. Della Frera, and A. Tosi, “CMOS SPAD pixels for indirect time-of-flight ranging,” in IEEE Photonics Conference 2012, 2012, pp. 22–23.

[121]  D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in 42nd European Solid-State Device Research Conference and the 38th European Solid-State Circuits Conference, ESSDERC/ESSCIRC 2012. Conference Proceedings, 2012, pp. 230–233.

[122]  D. Contini, A. Dalla Mora, L. Di Sieno, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Time resolved functional near infrared spectroscopy by means of time gated system at small interfiber distance,” in Functional Near Infrared Spectroscopy Conference, 2012, vol. 8, p. 16.

[123]  D. Contini, A. Pifferi, A. Dalla Mora, L. Spinelli, A. Torricelli, A. Tosi, F. Martelli, G. Zaccanti, F. Zappa, and R. Cubeddu, “Time-Resolved Functional Diffuse Reflectance Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diodes,” in 221st ECS Meeting - Abstracts, 2012, vol. MA2012-01, p. 801.

[124]  A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett., vol. 100, pp. 241111–241114, 2012.

[125]  A. Dalla Mora, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, R. Cubeddu, A. Tosi, G. Boso, and F. Zappa, “Ultra-wide dynamic range optical measurements by means of fast-gated single-photon avalanche diode,” in Fotonica 2012, 14° Convegno Nazionale delle Tecnologie Fotoniche 2012, 2012.

[126]  M. Davanço, J. R. Ong, A. Bahgat Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett., vol. 100, no. 26, p. 261104, Jun. 2012.

[127]  A. Farina, I. Bargigia, A. Tosi, A. Bassi, P. Taroni, A. Bahgat Shehata, A. Della Frera, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Diffuse Optical Spectroscopy up to 1700 nm : a Time-Resolved Analysis Using an InGaAs/InP Single-Photon Avalanche Diode,” in Fotonica 2012, 14° Convegno Nazionale delle Tecnologie Fotoniche, 2012, pp. 1–4.

[128]  P. Kolenderski, A. Czerwinski, C. Scarcella, S. Bellisai, A. Tosi, and T. Jennewein, “Reconstruction of single photon’s transverse spatial wave function,” in QCMC 2012 - Program and Book of Abstracts, 2012.

[129]  B. Markovic, D. Tamborini, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements.,” Rev. Sci. Instrum., vol. 83, no. 7, p. 74703, Jul. 2012.

[130]  B. Markovic, D. Tamborini, F. Villa, and A. Tosi, “Single-chip time-to-digital converter with 10 ps resolution, 160 ns dynamic range, and 1% LSB DNL,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2012, pp. 1440–1444.

[131]  B. Markovic, F. Villa, S. Bellisai, D. Bronzi, C. Scarcella, G. Boso, A. Bahgat Shehata, A. Della Frera, and A. Tosi, “A compact Time-to-Digital Converter (TDC) Module with 10 ps resolution and less than 1.5% LSB DNL,” in Proc. of IEEE Photonics Conference 2012, 2012, pp. 26–27.

[132]  M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact fNIRS scanner: First in-vivo tests,” in Functional Near Infrared Spectroscopy Conference, 2012, vol. 10746, no. 2011, p. 61.

[133]  M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. Dalla Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express, vol. 20, no. 1, pp. 283–290, Dec. 2012.

[134]  M. Mazurenka, H. Wabnitz, A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, F. Zappa, and R. Macdonald, “Development of an optical non-contact time-resolved diffuse reflectance scanning imaging system,” in Biomedical Optics and 3-D Imaging, 2012, p. BTu3A.50.

[135]  J. R. Ong, M. Davanco, A. Bahgat Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, K. Srinivasan, and S. Mookherjea, “Heralded single photons from silicon coupled-resonator optical waveguides,” in The 9th International Conference on Group IV Photonics (GFP), 2012, pp. 3–5.

[136]  J. R. Ong, M. Davanco, A. Bahgat Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, Y. A. Vlasov, W. M. J. Green, K. Srinivasan, and S. Mookherjea, “Heralded single photons from a silicon nanophotonic chip,” in Lasers and Electro-Optics (CLEO), 2012 Conference on, 2012, p. CTh3M.6.

[137]  C. Scarcella, S. Bellisai, A. Della Frera, A. Ruggeri, S. Tisa, A. Tosi, and F. Zappa, “32 channels SPAD array for single photon timing applications,” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2012, pp. 1465–1468.

[138]  A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP SPAD with improved structure for sharp timing response,” in 2012 International Electron Devices Meeting, 2012, p. 24.4.1-24.4.4.

[139]  A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE J. Quantum Electron., vol. 48, no. 9, pp. 1227–1232, Sep. 2012.

[140]  A. Tosi, A. Della Frera, A. Bahgat Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions.,” Rev. Sci. Instrum., vol. 83, no. 1, p. 13104, Jan. 2012.

[141]  A. Tosi, A. Della Frera, A. Bahgat Shehata, C. Scarcella, F. Acerbi, and F. Zappa, “InGaAs/InP single-photon counting module running up to 133 MHz,” in Proc. SPIE 8268, Quantum Sensing and Nanophotonic Devices IX, 2012, vol. 8268, no. 1, p. 82681S–82681S–6.

[142]  A. Tosi, F. Zappa, and S. Cova, “Single-photon detectors for practical quantum cryptography,” in Proc. SPIE 8542, Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI, 2012, p. 85421U–1–85421U–8.

[143]  F. Villa, D. Bronzi, S. Bellisai, G. Boso, A. Bahgat Shehata, C. Scarcella, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, and W. Brockherde, “SPAD imagers for remote sensing at the single-photon level,” in Proc. SPIE 8542, Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI, 2012, p. 85420G.

[144]  F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J., vol. 4, no. 3, pp. 795–804, Jun. 2012.

[145]  F. Villa, B. Markovic, D. Bronzi, S. Bellisai, G. Boso, C. Scarcella, A. Tosi, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD detector for long-distance 3D ranging with sub-nanosecond TDC,” in IEEE Photonics Conference 2012, 2012, vol. 3, pp. 24–25.

[146]  F. Acerbi, M. Anti, A. Dalla Mora, A. Tosi, and F. Zappa, “Dark counts, afterpulsing and timing jitter of latest InGaAs/InP Single-Photon Avalanche Diodes,” in 5th Single Photon Workshop 2011 - Abstracts, 2011, pp. 40–41.

[147]  F. Acerbi, A. Tosi, A. Dalla Mora, M. Anti, and F. Zappa, “Experimental characterization of afterpulsing and timing jitter of InGaAs/InP SPAD,” in Proc. SPIE 7934, Optical Components and Materials VIII, 2011, vol. 7934, no. 1, p. 79340L–79340L–8.

[148]  M. Anti, F. Acerbi, A. Tosi, and F. Zappa, “Integrated simulator for single photon avalanche diodes,” in 2011 Numerical Simulation of Optoelectronic Devices, 2011, pp. 47–48.

[149]  M. Anti, A. Tosi, F. Acerbi, and F. Zappa, “Modeling of afterpulsing in single-photon avalanche diodes,” in Proc. of SPIE 7933, Physics and Simulation of Optoelectronic Devices XIX, 2011, vol. 7933, no. 1, p. 79331R–79331R–8.

[150]  A. Bahgat Shehata, C. Scarcella, A. Della Frera, A. Tosi, and F. Zappa, “InGaAs/InP single-photon detection module with clean temporal response,” 5th Single Photon Workshop 2011 - Abstracts. p. 38, 2011.

[151]  A. Bahgat Shehata, C. Scarcella, A. Tosi, and A. Della Frera, “Photon counting module based on InGaAs/InP Single-Photon Avalanche Diodes for near-infrared counting up to 1.7 µm,” in 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics, 2011, pp. 177–180.

[152]  I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “InGaAs/InP Single Photon Avalanche Diode operated in gated mode for time-resolved diffuse optical spectroscopy up to 1700 nm,” in XCVII Congresso Nazionale della Società Italiana di Fisica - Abstracts, 2011.

[153]  I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Farina, A. Bassi, P. Taroni, A. Dalla Mora, F. Zappa, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm using a time-gated InGaAs/InP Single-Photon Avalanche Diode,” in Proc. SPIE 8090, Novel Biophotonic Techniques and Applications, 2011, p. 80900U–1–80900U–5.

[154]  I. Bargigia, A. Tosi, A. Farina, A. Bassi, P. Taroni, A. Bahgat Shehata, A. Della Frera, A. Dalla Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-domain diffuse optical spectroscopy up to 1700 nm using an InGaAs/InP Single-Photon Avalanche Diode,” in Proc. SPIE 7895, Optical Biopsy IX, 2011, p. 78950C–1–78950C–4.

[155]  S. Bellisai, F. Guerrieri, S. Tisa, F. Zappa, A. Tosi, and A. Giudice, “1024 pixels single photon imaging array for 3D ranging,” in Proc. SPIE 7942, Optoelectronic Integrated Circuits XIII, 2011, p. 79420L–79420L–8.

[156]  G. Boso, A. Dalla Mora, A. Tosi, A. Pifferi, and D. Contini, “Fast-gated single-photon detector module for wide dynamic range optical measurements,” in 7th Conference on Ph.D. Research in Microelectronics and Electronics, 2011, pp. 173–176.

[157]  R. Cubeddu, A. Bassi, D. Comelli, S. Cova, A. Farina, M. Ghioni, I. Rech, A. Pifferi, L. Spinelli, P. Taroni, A. Torricelli, A. Tosi, G. Valentini, and F. Zappa, “Photonics for life.,” IEEE Pulse, vol. 2, no. 3, pp. 16–23, 2011.

[158]  A. Farina, A. Bassi, I. Bargigia, A. Tosi, A. Bahgat Shehata, A. Della Frera, P. Taroni, A. Dalla Mora, F. Zappa, R. Cubeddu, and Pifferi, “Diffuse optical spectroscopy in the 1100-1700 nm range using a time-gated InGaAs/InP Single-Photon Avalanche Diode,” in 13° Convegno Nazionale delle Tecnologie Fotoniche, 2011, pp. 1–3.

[159]  F. Guerrieri, S. Tisa, A. Tosi, S. Bellisai, B. Markovic, and F. Zappa, “Linear arrays of Single-Photon detectors for Photon Counting and timing,” in Proc. SPIE 7875, Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications XII, 2011, p. 78750N–1–78750N–9.

[160]  M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt., vol. 58, no. 3–4, pp. 174–200, Feb. 2011.

[161]  B. Markovic, S. Tisa, A. Tosi, and F. Zappa, “Smart-pixel for 3D ranging imagers based on single-photon avalanche diode and time-to-digital converter,” in Proc. SPIE 8033, Advanced Photon Counting Techniques V, 2011, p. 80330A–80330A–6.

[162]  B. Markovic, S. Tisa, A. Tosi, and F. Zappa, “Towards arrays of smart-pixels for time-correlated single photon counting and time of flight application,” in Proc. SPIE 7942, Optoelectronic Integrated Circuits XIII, 2011, p. 79420K–1–79420K–6.

[163]  B. Markovic, S. Tisa, A. Tosi, and F. Zappa, “Monolithic single-photon detectors and time-to-digital converters for picoseconds time-of-flight ranging,” in Proc. SPIE 7875, Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications XII, 2011, p. 78750P–1–78750P–6.

[164]  M. Mazurenka, A. Jelzow, B. Ebert, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, A. Dalla Mora, A. Tosi, and R. Macdonald, “Non-contact time-domain scanning brain imager: results of proof ofprinciple tests,” in Proc. SPIE 8088, Diffuse Optical Imaging III, 2011, p. 80880A–1–80880A–6.

[165]  A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, “Active Area Uniformity of InGaAs/InP Single-Photon Avalanche Diodes,” IEEE Photonics J., vol. 3, no. 1, pp. 31–41, Feb. 2011.

[166]  A. Tosi, A. Bahgat Shehata, A. Della Frera, A. Dalla Mora, S. Tisa, F. Acerbi, and F. Zappa, “Compact detection module based on InGaAs/InP SPADs for near-infrared single-photon counting up to 1.7 μm,” in Proc. of SPIE 7945, Quantum Sensing and Nanophotonic Devices VIII, 2011, vol. 7945, no. 1, p. 79452L–79452L–7.

[167]  A. Tosi, A. Dalla Mora, A. Della Frera, F. Acerbi, A. Bahgat Shehata, and F. Zappa, “Advanced single photon counting instrumentation for SPADs,” in Proc. SPIE 7945, Quantum Sensing and Nanophotonic Devices VIII, 2011, vol. 7945, no. 1, p. 79452O.

[168]  A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express, vol. 19, no. 11, pp. 10735–10746, 2011.

[169]  S. Bellisai, F. Guerrieri, A. Tosi, F. Zappa, and S. Tisa, “Single-photon 3D ranging based on SPAD imagers,” in 2010 IEEE Photinic Society’s 23rd Annual Meeting, 2010, pp. 179–180.

[170]  D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Dalla Mora, A. Tosi, F. Zappa, and S. Cova, “Functional diffuse reflectance spectroscopy at small source-detector distances based on fast-gated single-photon avalanche diodes,” in Proc. SPIE 7681, Advanced Photon Counting Techniques IV, 2010, pp. 768102-1-768102–8.

[171]  D. Contini, L. Spinelli, M. Caffini, L. M. Zucchelli, A. Tosi, R. Cubeddu, and A. Torricelli, “A Multichannel Medical Device for Brain Imaging by Time-Domain fNIRS,” in Biomedical Optics and 3-D Imaging, 2010, p. JMA101.

[172]  S. Cova, M. Ghioni, F. Zappa, A. Gulinatti, I. Rech, and A. Tosi, “Single photon counting detectors in action: Retrospect and prospect,” in 2010 IEEE Photinic Society’s 23rd Annual Meeting, 2010, pp. 177–178.

[173]  S. Cova, M. Ghioni, F. Zappa, A. Tosi, I. Rech, A. Gulinatti, and S. Tisa, “Single-Photon Avalanche Detectors for Quantum Communications,” in Optical Fiber Communication Conference, 2010, p. OTuC2.

[174]  A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 4, pp. 1023–1030, 2010.

[175]  A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, and R. Cubeddu, “Fast gating of single-photon avalanche diodes for photon migration measurements,” Lect. Notes Electr. Eng., vol. 54, pp. 151–154, 2010.

[176]  F. Guerrieri, S. Bellisai, A. Tosi, G. M. Padovini, F. Zappa, and S. Tisa, “SPAD arrays for parallel photon counting and timing,” in 2010 IEEE Photinic Society’s 23rd Annual Meeting, 2010, pp. 355–356.

[177]  F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Single-photon camera for high-sensitivity high-speed applications,” in Proc. SPIE 7536, Sensors, Cameras, and Systems for Industrial/Scientific Applications XI, 2010, pp. 753605-1-753605–10.

[178]  F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-Dimensional SPAD Imaging Camera for Photon Counting,” IEEE Photonics J., vol. 2, no. 5, pp. 759–774, Oct. 2010.

[179]  B. Markovic, A. Tosi, F. Zappa, and S. Tisa, “Smart-pixel with SPAD detector and time-to-digital converter for time-correlated single photon counting,” in 2010 IEEE Photinic Society’s 23rd Annual Meeting, 2010, pp. 181–182.

[180]  A. Pifferi, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Dalla Mora, A. Tosi, and F. Zappa, “The Spread Matrix: A Method to Predict the Effect of a Non Time-Invariant Measurement System,” in Biomedical Optics and 3-D Imaging, 2010, p. BSuD22.

[181]  A. Tosi, F. Acerbi, A. Dalla Mora, and F. Zappa, “Characterization of InGaAs/InP single-photon avalanche diodes,” in 2010 IEEE Photinic Society’s 23rd Annual Meeting, 2010, pp. 130–131.

[182]  A. Tosi, A. Dalla Mora, A. Della Frera, A. Bahgat Shehata, A. Pifferi, and D. Contini, “Fast-gated SPAD for ultra-wide dynamic range optical investigations,” in 2010 IEEE Photinic Society’s 23rd Annual Meeting, 2010, pp. 185–186.

[183]  A. Tosi, A. Dalla Mora, A. Della Frera, F. Zappa, S. Cova, A. Pifferi, L. Spinelli, A. Torricelli, D. Contini, and R. Cubeddu, “Ultra-Fast Time-Gated SPAD for Multi-Wavelength Wide Dynamic Range Spectroscopy,” in Biomedical Optics and 3-D Imaging, OSA Technical Digest (CD), 2010, p. BTuD48.

[184]  A. Tosi, A. Dalla Mora, S. Tisa, F. Acerbi, F. Zappa, and S. Cova, “InGaAs/InP SPADs for near-infrared applications: device operating conditions and dedicated electronics,” in Proc. SPIE 7681, Advanced Photon Counting Techniques IV, 2010, p. 76810R–1–76810R–12.

[185]  A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Performance of Commercially Available InGaAs/InP SPAD with Custom Electronics,” in Sensors and Microsystems - AISEM 2009 Proceedings, 2010, vol. 54, pp. 155–159.

[186]  A. Tosi, A. Dalla Mora, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon detectors boost dynamic range in NIR spectroscopy,” in Proc. SPIE 7556, Design and Quality for Biomedical Technologies III, 2010, p. 75560G–1–75560G–6.

[187]  F. Zappa, A. Tosi, A. Dalla Mora, F. Guerrieri, and S. Tisa, “Single-photon avalanche diode arrays and CMOS microelectronics for counting, timing, and imaging quantum events,” in Proc. SPIE 7608, Quantum Sensing and Nanophotonic Devices VII, 2010, p. 76082C–1–76082C–15.

[188]  A. Dalla Mora, A. Tosi, F. Zappa, and S. Cova, “Fast gating of single-photon avalanche diodes for photon migration measurements,” in Sensors and Microsystems - AISEM 2009 Proceedings, 2009.

[189]  L. Spinelli, D. Contini, R. Cubeddu, A. Pifferi, A. Torricelli, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Brain functional imaging at small source-detector distances based on fast-gated Single-Photon Avalanche Diodes,” in Proc. SPIE 7161, Photonic Therapeutics and Diagnostics V, 2009, p. 71613B–1–71613B–7.

[190]  A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt., vol. 56, no. 2–3, pp. 299–308, Jan. 2009.

[191]  A. Tosi, A. Dalla Mora, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Ultra-fast time-gating of SPAD for wide dynamic range optical measurements,” in Single Photon Workshop 2009, 2009.

[192]  A. Tosi, A. Dalla Mora, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for extremely wide dynamic-range applications,” in Proc. SPIE 7170, Design and Quality for Biomedical Technologies II, 2009, p. 71700K–71700K–11.

[193]  A. Tosi, A. Dalla Mora, F. Zappa, S. Cova, M. A. Itzler, and X. Jiang, “InGaAs/InP single-photon avalanche diodes show low dark counts and require moderate cooling,” in Proc. SPIE 7222, Quantum Sensing and Nanophotonic Devices VI, 2009, vol. 7222, p. 72221G–72221G–9.

[194]  F. Zappa, A. Tosi, A. Dalla Mora, and S. Tisa, “SPICE modeling of single photon avalanche diodes,” Sensors Actuators A Phys., vol. 153, no. 2, pp. 197–204, Aug. 2009.

[195]  A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-Resolved Functional Near-Infrared Spectroscopy at Null Source-Detector Separation,” in Biomedical Optics, OSA Technical Digest (CD), 2008, p. BWC6.

[196]  A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-Resolved Diffuse Reflectance Using Small Source-Detector Separation and Fast Single-Photon Gating,” Phys. Rev. Lett., vol. 100, no. 13, p. 138101, Mar. 2008.

[197]  S. Tisa, F. Guerrieri, A. Tosi, and F. Zappa, “100 kframe/s 8 Bit Monolithic Single-Photon Imagers,” in 38th European Solid-State Device Research Conference and the 34th European Solid-State Circuits Conference, ESSDERC/ESSCIRC 2008. Conference Proceedings, 2008, pp. 274–277.

[198]  A. Tosi, A. Dalla Mora, F. Pozzi, and F. Zappa, “Modeling and Probing Hot-Carrier Luminescence From MOSFETs,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 350–352, Apr. 2008.

[199]  A. Tosi, A. Dalla Mora, and F. Zappa, “All-silicon 1.55 µm high-resolution photon counting and timing,” Photonics Technol. Lett. IEEE, vol. 20, no. 23, pp. 1956–1958, 2008.

[200]  A. Tosi, F. Stellari, F. Zappa, and P. Song, “A Packaging Solution for Optically Testing Wire-Bonded Chips,” Adv. Packag. IEEE Trans., vol. 31, no. 3, pp. 490–495, 2008.

[201]  S. Cova, A. Tosi, F. Zappa, and A. Dalla Mora, “Single-Photon Avalanche Diodes for quantum key distribution,” Proceedings of Single Photon Workshop 2007. Istituto Nazionale di Ricerca Metrologica INRIM, TORINO, pp. 27–28, 2007.

[202]  A. Dalla Mora, A. Tosi, S. Tisa, and F. Zappa, “Single-Photon Avalanche Diode Model for Circuit Simulations,” IEEE Photonics Technol. Lett., vol. 19, no. 23, pp. 1922–1924, Dec. 2007.

[203]  A. Dalla Mora, A. Tosi, and F. Zappa, “Silicon Single Photon Avalanche Diode with 25 ps resolution at 1.55 µm,” in Proceedings of Single Photon Workshop 2007, 2007, pp. 106–107.

[204]  M. A. Itzler, R. Ben-Michael, C.-F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications,” J. Mod. Opt., vol. 54, no. 2–3, pp. 283–304, Jan. 2007.

[205]  A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at small source-detector separation using a time-gated single-photon avalanche diode,” in Proc. SPIE 6631, Novel Optical Instrumentation for Biomedical Applications III, 2007, vol. 6631, p. 66310B–66310B–5.

[206]  S. Tisa, A. Tosi, and F. Zappa, “Fully-integrated CMOS single photon counter,” Opt. Express, vol. 15, no. 6, p. 2873, 2007.

[207]  S. Tisa, F. Zappa, A. Tosi, and S. Cova, “Electronics for single photon avalanche diode arrays,” Sensors Actuators A Phys., vol. 140, no. 1, pp. 113–122, Oct. 2007.

[208]  A. Torricelli, A. Pifferi, L. Spinelli, D. Contini, R. Cubeddu, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-gated single-photon avalanche photodiode for time-resolved diffuse reflectance at small source-detector separation,” in Proc. SPIE 6771, Advanced Photon Counting Techniques II, 2007, vol. 6771, p. 67710J–1–67710J–5.

[209]  A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Germanium and InGaAs/InP SPADs for Single-Photon Detection in the Near-Infrared,” in Proceedings of SPIE Optics East 2007 - Advanced Photon Counting Techniques II, 2007, p. 67710P–67710P–12.

[210]  F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sensors Actuators A Phys., vol. 140, no. 1, pp. 103–112, Oct. 2007.

[211]  F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Proc. SPIE 6583, Photon Counting Applications, Quantum Optics, and Quantum Cryptography, 2007, vol. 6583, p. 65830E–1–65830E–12.

[212]  S. Cova, A. Tosi, A. Gulinatti, F. Zappa, and M. Ghioni, “Avalanche Diodes and Circuits for Infrared Photon Counting and Timing: Retrospect and Prospect,” IEEE LEOS Newsl., vol. 20, pp. 25–28, 2006.

[213]  A. Pifferi, A. Torricelli, L. Spinelli, R. Cubeddu, F. Martelli, G. Zaccanti, S. Del Bianco, A. Tosi, F. Zappa, and S. Cova, “Time-Resolved Diffuse Reflectance at Null Source-Detector Separation: A Novel Approach to Photon Migration,” in Biomedical Optics, Technical Digest (CD), 2006, p. TuD5.

[214]  F. Stellari, A. Tosi, and P. Song, “Switching Time Extraction of CMOS Gates using Time-Resolved Emission (TRE),” in 2006 IEEE International Reliability Physics Symposium Proceedings, 2006, pp. 566–573.

[215]  A. Tosi, S. Cova, F. Zappa, M. A. Itzler, and R. Ben-Michael, “InGaAs/InP Single Photon Avalanche Diode Design and Characterization,” in 2006 European Solid-State Device Research Conference, 2006, pp. 335–338.

[216]  A. Tosi, A. Gallivanoni, F. Zappa, and S. Cova, “Gated Operation of InGaAs SPADs with Active-Quenching and Fast Timing Circuits,” in Proceedings of SPIE Optics East 2006 - Advanced Photon Counting Techniques, 2006, vol. 6372, p. 63720Q–63720Q–12.

[217]  A. Tosi, F. Stellari, A. Pigozzi, G. Marchesi, and F. Zappa, “Hot-Carrier Photoemission in Scaled CMOS Technologies: A Challenge for Emission Based Testing and Diagnostics,” in 2006 IEEE International Reliability Physics Symposium Proceedings, 2006, pp. 595–601.

[218]  M. A. Itzler, R. Ben-Michael, C.-F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes for 1.5 µm photon counting applications,” in Proceedings of Single Photon Workshop 2005, 2005, pp. 42–43.

[219]  F. Stellari, P. Song, J. Hryckowian, O. A. Torreiter, S. Wilson, P. Wu, and A. Tosi, “Characterization of a 0.13 μm CMOS Link Chip using Time Resolved Emission (TRE),” Microelectron. Reliab., vol. 45, no. 9–11, pp. 1550–1553, Sep. 2005.

[220]  A. Tosi, F. Stellari, and F. Zappa, “Innovative packaging technique for backside optical testing of wire-bonded chips,” Microelectron. Reliab., vol. 45, no. 9–11, pp. 1493–1498, Sep. 2005.

[221]  F. Stellari, A. Tosi, F. Zappa, and S. Cova, “CMOS Circuit Testing via Time-Resolved Luminescence Measurements and Simulations,” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 163–169, Feb. 2004.

[222]  A. Tosi, M. REMMACH, R. DESPLATS, F. ZAPPA, and P. PERDU, “Implementation of TRE systems into Emission Microscopes,” Microelectron. Reliab., vol. 44, no. 9–11, pp. 1529–1534, Sep. 2004.

[223]  A. Tosi, F. Stellari, and F. Zappa, “Current crowding in faulty MOSFET: optical and electrical investigation,” Microelectron. Reliab., vol. 44, no. 9–11, pp. 1577–1581, Sep. 2004.

[224]  A. Tosi, F. Stellari, F. Zappa, and S. Cova, “Hot-carrier luminescence: comparison of different CMOS technologies,” in 33rd Conference on European Solid-State Device Research, 2003. ESSDERC ’03., 2003, pp. 351–354.

[225]  A. Tosi, F. Stellari, F. Zappa, and S. Cova, “Backside Flip-Chip testing by means of high-bandwidth luminescence detection,” Microelectron. Reliab., vol. 43, no. 9–11, pp. 1669–1674, 2003.

[226]  A. Tosi, F. Zappa, S. Cova, and F. Stellari, “Luminescence measurements for the investigation of VLSI circuit defects,” in Sensors and Microsystems: Proceedings of the 8th Italian Conference AISEM, 2003, pp. 521–527.

 

 

Patents

Franco Stellari, Alberto Tosi, Peilin Song

"System and Method for estimation of integrated circuit signal characteristics using optical measurements"

US 7,612,571 B2, date Nov. 3, 2009

 

Alberto Tosi, Franco Stellari, Franco Zappa, Peilin Song

"Apparatus and methods for packaging electronic devices for optical testing"

US 7,635,904 B2, date Dec. 22, 2009

 

Franco Stellari, Alberto Tosi, Franco Zappa, Peilin Song

"Method and Apparatus for creating time-resolved emission images of integrated circuits using a single-point Single-Photon Detector and a Scanning System"

US 8,115,170 B2, date Feb. 14, 2012

 

 

Sign in|Recent Site Activity|Report Abuse|Print Page|Powered By Google Sites